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Abstract

The research objective is to develop a non-destructive testing (NDT) method to evaluate
the prestress loss in prestressed concrete bridge girders using ultrasonic waves. The work
principle is based on acoustoelastic effect - ultrasonic wave velocity varies with stress level
in prestressed concrete. A self-reference test setup was proposed to measure wave velocity
in two orthogonal directions (prestress and unstressed directions) in the girder. This setup
will be able to reduce effects of material variation and temperature change.

The concept was first validated on small concrete specimens (cylinders and beams) in
laboratory. A signal analysis algorithm was developed to reliably measure P wave velocity
change with stress, i.e. the acoustoelastic coefficient. Then the proposed technique was
applied to a full-scale prestressed concrete bridge girder (131 ft long) to monitor the stress
release process. The stress change monitored by the ultrasonic test showed good agreement
with the result from the strain measurement. In both the small beam test and the large girder
test, the measured acoustoelastic coefficients were in the range of 0.7%/ksi.

The temperature effects on acoustoelastic coeflicient were investigated on two pre-
stressed concrete members. Experimental results showed a slight difference between tem-
perature induced velocity changes in the prestress and unstressed directions. Although
temperature variation can cause large change of velocity, the self-reference setup will be
able to correct about 80% of temperature effect. The relationship between relative wave ve-
locity changes and stress changes in two orthogonal directions after temperature correction
can be used to predict the stress level in concrete and reduce environmental influences.

iii



Acknowledgments

This research project would not have been possible without the funding provided by the
Nebraska Department of Transportation. The authors would also like to acknowledge
Coreslab Structures Inc. (Omabha site) for providing access and assisting in the test of the
full scale bridge girder.

iv



Contents

4.1
4.2

4.3

1 Introduction
1.1 Introduction . . . . . . . . . . . . . . e
1.2 Objectives . . . . . . . . o e
1.3 Reportoverview . . . . . . . . . . . e e
2 Literature review and theoretical background
2.1 Literature review . . . . . . . . ..o e e e e
2.2 Acoustoelasticeffect . . . ... ... ... Lo
2.3 Measurement of relative velocity change . . . . . . ... ... ... ... ..
3 Laboratory experiments
3.1 Ultrasonic sensors selection . . . . . . . . . .. ... ... ... ..., .
3.2 Laboratory test plans and experimental setup . . . . . . .. .. ... ...
3.2.1 Laboratory testplans . . . . . . .. .. .. ... ... ... ...
3.2.2 Experimentalsetup . . . . . ... ... ... ...
3.3 Analysis of time window effects . . . . . ... ... .. oL
3.3.1 Time window effects on CWI analysis . . . . . ... ... ... ..
3.3.2 Time window of direct Pwave . . . . ... ... ... .......
3.3.3 Automatic determination of P wave arrival . . .. ... ... ...
3.4 Results from small concretebeam . . . . .. ... ... ... .. ... ..
4 Test on a full-scale bridge girder

Bridge girder description and experimental setup . . . . . . ... ... ..
Results and discussion . . . . . . . . ... L L Lo oo
4.2.1 Ultrasonic monitoring . . . . . . . . . . . .. ...
4.2.2  Stress and strain measurements . . . . . . . ... ... ...
Temperature effect in prestressed concrete members . . . . . . . . .. ...

11
11
13
13
13
15
15
17
18
19



4.3.1 prestressed concrete specimens and testsetup . . . . . .. ... ..

4.3.2 Results of temperature effect

5 Conclusions and future work

vi



List of Figures

1.1

1.2

2.1

22

2.3

2.4

3.1
32

33

3.4

Current methods for measuring prestress loss: a) embedded gauges, and b)
surface gauges. . . . . . .. ..o e e e
(a) Concept of ultrasonic testing for stress evaluation in a prestressed con-
crete beam. (b) ultrasonic sensor holder to ensure consistent measurement. .

(a) Test setup for measuring acoustoelastic coefficient in concrete, where two
ultrasonic transducers are installed on top and bottom ends, and compression
load is applied in vertical direction [3]; (b) velocity changes in parallel and
transverse directions under axial compression [3]. . . . . . .. ... .. ..
Experimental setup of investigating the thermal effect on ultrasonic wave
velocity change. Left figure presents the climate chamber with samples
equipped with embedded ultrasonic sensors. Right figure shows the velocity
variation due to temperature change in three samples [13]. . . . . . . . ..
Temperature compensation by experimenting on two test specimens simul-
taneously [7]. . . . . . ..
An example of applying stretching technique on ultrasonic waveforms. Blue
line is acquired from stress-free state, and the red solid line is from un-
stressed state. The red dash line is interpolated from stressed state wave-
form at #(1 + &y4x). The stretched waveform almost overlaps the reference
0] 1T

Strong cross talk in PZT receiver signal. . . . . . ... ... ... ... ..
Selected ultrasonic sensors: (a) PZT sensor from Steminc Inc. (b) AE
sensor R61-AST from Physical Acoustic (Mistras). . . ... ... ... ..
A typical ultrasonic signal received in the parallel direction on a concrete
cylinder. (a) Time domain signal and (b) amplitude spectrum. . . . . . . . .
Experimental setup of 6" X 12" concrete cylinder. . . . . . . .. ... ...

vii

12



3.5

3.6

3.7

3.8

3.9

3.10
3.11

4.1
4.2

4.3

4.4

4.5
4.6

4.7

4.8

4.9

Experimental setup of the 6" X 6" X 20" concrete beam: (a) side view; (b)
planview. . . . ...
Signals received from parallel receiver (top plot) and perpendicular receiver
(bottom plot). The signals are divided into seven time windows. P wave
part is selected at [#,,1.5¢,] inthisstudy. . . . . ... ... ... ... ...
Acoustoelastic coefficients a by stretching different time windows and by
stretching the full-length signals. . . . . . . .. ... ... ... ......
Sketch of propagation paths of direct P wave (solid line) and coda wave
(dash line). . . . . . . . . . .
The relationship between wave velocity change and stress in directions
parallel to and perpendicular to the stress. . . . . . . ... ... ... ...
P wave arrival’s pickup using AIC method. . . . . ... ... ... ....
Relative P wave velocity change vs. stress on the top surface of the 6" x 6"
x 20" concretebeam. . . . . ... Lo

Side view of the 131’ prestressed concrete bridge girder (not to scale). . . .
Cross sections at the end (left) and middle (right) of the prestressed concrete
bridge girder. . . . . . . .. L
Ultrasonic sensors (top) and DEMC target positions (bottom) on the bridge
girder. . . . .. L e
Relative velocity change monitored during the prestress release process on
the 131-ft long bridge girder, before and after temperature correction. Blue
lines represent the result from the parallel receiver, and the red lines are
from the perpendicular receiver. The inset in (b) shows more details in the
process of cutting the top strands. . . . . . . . ... ... ... ... ...
Prestress loss calculation based on AASHTO specifications. . . . ... ..
Investigating temperature effect on ultrasonic wave velocity in the bridge
girder. . . . ..
Test on an one-way prestressed concrete slab in PKI structural laboratory
to investigate the temperature effect on the ultrasonic wave velocity in
prestressed concrete members. . . . . ... Lo Lo
Relative velocity change with temperature on the prestressed concrete bridge
girder. . . . ..
Relative velocity change with temperature on the one-way prestressed con-
creteslab. . . . ...

viii

15

23

27

29



List of Tables

2.1 Acoustoelastic constant reported by different experiments[4]. . . . . . . ..

ix



Chapter 1

Introduction

1.1 Introduction

Prestressed/precast concrete girders are the most used superstructure system in highway
bridges in Nebraska. Recently, the use of prestressed/precast concrete for deck construction
have gained considerable attention of state officials to accelerate bridge construction and
reduce maintenance cost. In all prestressed concrete systems, loss of prestress occurs imme-
diately after production (short term) due to elastic shortening and during construction and
operation (long term) due to shrinkage and creep of concrete and relaxation of prestressing
steel, which are inevitable time-dependent phenomena. Loss of prestressing can also occur
due to collision of bridge girders by oversized vehicles, which could result in rupture of few
strands. All these effects reduce the pre-compression of the tension fibers of the concrete
component and could significantly affect the component performance under service loads
resulting in frequent cracking.

AASHTO LRFD Section 5.9.5 “Loss of Prestress” provides two methods for estimat-
ing time-depended prestress losses: Approximate Estimate and Refined Estimate. Despite
the complexity and accuracy of the refined estimate, the reliability of the predicted losses
is still highly dependent on the actual material properties, environmental conditions, and
interaction between connected components. Currently, the existing methods for measur-
ing prestress loss require either installation of wired gauges inside the component during
production (Figure 1.1a), or installation of surface gauges prior to prestress release (Figure
1.1b) to achieve a zero-stress reference, which are impractical in practice.

Acoustoelastic effect refers to the dependency of ultrasonic wave velocities on stress
and polarization in materials. It is a nonlinear effect between stress and strain in an elastic



material. In theory, if the acoustoelastic coefficients (relative velocity change dV/V vs.
stress change) that express the linear relationship between ultrasonic velocities and stress
state of first order are determined, we can estimate the stress level in materials by measuring
ultrasonic velocity variations.

Fig. 1.1. Current methods for measuring prestress loss: a) embedded gauges, and b) surface
gauges.

1.2 Objectives

The objective of this research is to develop a self-referenced non-destructive testing (NDT)
tool for in-situ stress evaluation of prestressed concrete bridge components. The main
advantage of the new tool is that it can be used on the components surface (girder soffit or
deck top surface) with no need for reference readings. The conceptual sketch is presented
in Figure 1.2 for ultrasonic measurement on the bottom surface of a girder. Two ultrasonic
sensors (R1, R2) in orthogonal directions will receive signals emitted from the same
ultrasonic transmitter (red circle). Sensor R1 will measure waves that have the same
polarization and propagation direction as the prestress (horizontal), and the velocity is
affected by the stress level; while R2 will measure waves propagating/polarizing in the
unstressed direction (vertical), where the velocity is not or less affected by the prestress.
R2 signal can be approximately regarded as the reference signal at unstressed state; and
the velocity difference calculated between R1 and R2 signals will be used to evaluate the
prestress level. Since the signal under prestress and the reference signal are measured from
the same structure at the same time, the self-reference approach will eliminate effects of
material and temperature variations.
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Fig. 1.2. (a) Concept of ultrasonic testing for stress evaluation in a prestressed concrete
beam. (b) ultrasonic sensor holder to ensure consistent measurement.

1.3 Report overview

This research project focused on investigating the relationship between stress in concrete
and ultrasonic wave velocity change and developing a feasible NDT technique to evaluate
the prestress loss in prestressed concrete bridge girder. This research report consists of
five chapters. Chapter 1 presents the introduction of current prestress loss evaluation
methods, and summarizes research objectives. Chapter 2 reviews current NDT methods
based on acoustoelastic effect for evaluating stress in concrete and their challenges. Related
theoretical background is described. Chapter 3 presents two laboratory experiments along
with the results and discussion. A feasible NDT technique for measuring the stress level
is proposed. In chapter 4, the developed ultrasonic test method was applied to a 131-foot
long prestressed concrete girder at Coreslab Structures in Omaha. The temperature effects
on the wave velocity change were also investigated. Chapter 5 presents the conclusion of
this research project and future work.



Chapter 2

Literature review and theoretical
background

2.1 Literature review

Existing techniques for measuring prestress loss can be divided into destructive and non-
destructive methods [1, 2]. Current non-destructive methods either require sensors to be
embedded in the component during production or request an initial reference value, which
is impractical for existing prestressed concrete components.

One promising method is to evaluate the stress in concrete using ultrasonic waves
based on the acoustoelastic phenomena [3, 5]. The acoustoelastic effect describes that the
wave velocity linearly changes with the stress in concrete [3, 5-7]. Figure 2.1(a) shows a
laboratory test setup for measuring ultrasonic wave velocity change in a concrete cylinder
under compression test. Figure 2.1(b) presents the test results, which show that the ultrasonic
P wave velocity changes 0.13 %/MPa (0.9 %/ksi) when the wave polarization is parallel to
the stress direction (Axis 1), while the change in transverse direction (Axis 2) is only 0.02
%/MPa (0.003 %/ksi). These slopes are defined as acoustoelastic coeflicients.

Planés and Larose [4] gave a comprehensive review of acoustoelastic coeflicients in
concrete measured by different researchers. They found the reported acoustoelastic coef-
ficients vary widely, ranging from 0.01 %/MPa (0.07 %o/ksi) to 0.5 %/MPa (3.4 %/ksi).
The results are summarized in Table 2.1. In these experiments, researchers calculated the
wave velocity change either by picking up the first arrival time of ultrasonic wave or using
the coda wave interferometry (CWI) analysis. Since the velocity change is very small for
acoustoelastic effect, the first arrival method does not provide sufficient accuracy and is
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Fig. 2.1. (a) Test setup for measuring acoustoelastic coefficient in concrete, where two
ultrasonic transducers are installed on top and bottom ends, and compression load is applied
in vertical direction [3]; (b) velocity changes in parallel and transverse directions under axial
compression [3].

prone to errors. Alternatively, the CWI analysis method calculates the velocity change [6—
9] using cross correlation between the reference and perturbed signals. The CWI analysis
has very high sensitivity to a small velocity change in materials by using the entire signal
or a segment of signal. A challenge in CWI analysis is how to select the signal window.
Zhang et al. [7] suggests that the start time of the window needs to be late enough so that
the ultrasonic propagation distance is greater than four times the transport mean free path
I [10]. However, it is still found that the acoustoelastic constants vary depending on the
selected time window in the signals [7, 11]. More details about CWI analysis are presented
in section 2.3.

Unlike experiments in the laboratory which is under relatively stable temperature en-
vironment, actual prestressed concrete bridges experience a wide range of temperature
changes. Many studies indicate that the temperature change has quite significant effect on
the ultrasonic wave velocity in concrete [7, 12—15]. Figure 2.2 presents an experimental
study about the temperature effect on the wave velocity change in concrete. The veloc-
ity changes about 4% in a 50°C range, which corresponds to a velocity change rate of
0.08%/°C. Most concrete structures experience more than 20°C temperature change daily.
Therefore, the thermal induced velocity change is comparable to or much larger than the
acoustoelastic effect (about 0.1%/MPa). One solution to the temperature effect problem is



Table 2.1. Acoustoelastic constant reported by different experiments[4].

Test
configuration

Acousto-elastic
constant (Aj)

Specification

Uni-axial load
Uni-axial load
Uni-axial load

Cyclic uni-axial
load

Four-point
bending test

Uni-axial load

Cyclic uni-axial
load

Cyclic uni-axial
load

Cyclic load

Uni-axial load

Uni-axial
tensile load

1073 MPa—!
107%to 1073 MPa ™!
107%to 10~ MPa~!

23 x 1073 up to
46 x 10 ° MPa !
Not apply

0.5 x 1072 up to
5.5 % 1073 MPa~!
0.7 x 102 up to
4% 1073 MPa~!
05 x 102 upto
2x 1073 MPa™!
Not apply

05 % 107> MPa™!

093 x 103 to
1.1 x 1073 MPa~!

dePends on wave polarization
Depends on wave polarization,
direct wave (no CWI)
Increases with damage

dV/V increases with damage

A increased with thermal
damage

A increased with mechanical
damage

A increased with chemical
(ASR) damage

Real size structure, dV/V
increased with damage

Also tested on a bridge under
construction

A slightly increased with a 20 h
creep test at 7 MPa

to use a reference specimen for temperature compensation, as shown in figure 2.3. However,
this method only works if the reference specimen is exactly the same as the test specimen,

which is not available in field applications.

In this study, we will focus on the following problems: (1) verify the acoustoelastic
effect in concrete; (2) investigate the time window effect on the CWI analysis; (3) address
the temperature effect. This chapter presents the theoretical background of acoustoelastic
effect and the CWI analysis method. Experimental studies will be shown in the following

chapters.
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Fig. 2.2. Experimental setup of investigating the thermal effect on ultrasonic wave velocity
change. Left figure presents the climate chamber with samples equipped with embedded
ultrasonic sensors. Right figure shows the velocity variation due to temperature change in
three samples [13].
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Fig. 2.3. Temperature compensation by experimenting on two test specimens simultane-
ously [7].



2.2 Acoustoelastic effect

The acoustoelastic effect describes the dependence of the stress wave velocity on the
stress/strain in the medium. In 1953, based on Murnaghan’s finite deformation theory
[16], Hughes and Kelly [17] derived equations describing the relationship between the
velocities of elastic waves and the strains in an isotropic body subjected to a homogeneous
triaxial finite strain:

poVE = A+ 2u+ (2L + )0 + (4m + 44 + 10p)a; (2.1a)
1
pOVlz2 =u+ (A+m)d+dua +2uar — nas (2.1b)
1
p0V123 =u+ (A+m)d+dua +2uas — e (2.1¢)
where
po = initial density
V11, V12, Vi3 = velocities of elastic waves propagating in direction 1
polarizing in direction 1, 2, and 3.
A, u = Lamé constants
[,m,n = Murnaghan constants
a1,@2, @3 = homogeneous triaxial finite strain in direction 1, 2, and 3
0= a+a+ a3
For a state of uniaxial stress in direction 1, the strains are | = €, @ = a3 = —ve. When the

strain changes are small, the relative wave velocity changes can be expressed as [17, 18]:

an/VlOl P w+2m+vu(l +20/2)

2.2
de A+2u (2.22)
dVia [V
WiafViy 5 vn, m (2.2b)
de 4 2(A+ )
dVa Vi m—pul/d
—==-2v(l + ——— 2.2
de v+ A+2u ) 2.2¢)
dV21/V201 A+2u+m
- 20+ +vn/4pu (2.2d)
dV23/V203 _ m=24 n (2.2¢)
de 2 +p) 4u =€



These equations are further generalized by Lillamand et al. [3], and the elastic wave velocity
under uni-axial loading can be expressed as:

Vl;r = Vl(J)(l + a,-jO'n) (2.3a)
dV,'j
W = i1 (2-3b)

ij
where Vl;’ is the wave velocity under the uni-axial stress o1, and Vl(]) is the wave velocity
under stress-free state. dV;; represents the wave velocity change from stress-free state to
uni-axial stress o state. The subscript ij stands for the wave propagation direction and
polarization direction. «;; is defined as the acoustoelstic coeflicient which depends on elastic
constants (Lamé and Murnaghan), Young’s modulus, the wave propagation direction, and
the wave polarization direction.

2.3 Measurement of relative velocity change

The reported acoustoelastic coefficients range from 0.01 %/MPa (0.07 %o/ksi) to 0.5 %/MPa
(3.4 Y/ksi) in concrete [3—6]. Conventional ultrasonic test methods by measuring the time
of flight (TOF) of P wave, such as the UPV test, cannot achieve such precision.

The stretching technique is a relatively new method used for measurement of relative
wave velocity change [19] in CWI analysis. This method assumes the perturbed signal is a
uniformly stretched (or compressed) version of the reference signal, so that it stretches (or
compresses) the perturbed signal to obtain maximum agreement with the reference signal.
In computer program, it first interpolates the perturbed signal S; at times #(1 + ) with a
series of stretching factors €, and then compare with the reference signal Sy by using the
cross-correlation coeflicient:

S $1l(1 + £)1Solr)d
\/ftltz Si[t(1 + &)] fz,tz Sg[t]dt

where t; to 1, is the selected time window for calculation. The g,,,, that maximizes the

CC(e) =

(2.4)

cross-correlation coefficient (CC) can represent the relative wave velocity change —dt/t,
and the relative wave velocity change dV/V = —dt/t = g4, [19, 20]. A demonstration of
the stretching technique on two ultrasonic waveforms is shown in figure 2.4.

The stretching technique has been widely used to evaluate small ultrasonic velocity
changes in concrete. Larose and Hall [6] utilized the stretching technique to reach a

9



resolution of 2 x 107> relative wave velocity change in concrete due to uni-axial stress.
Hadziioannou et al. [21] measured the small velocity change in concrete due to the temper-
ature change and found the stretching method is stable even when the signal-to-noise ratio
is low. Sun and Zhu [15] developed a nonlinear ultrasonic parameter for concrete damage
evaluation by measuring relative velocity changes with temperature. Niederleithinger et al.
[22] successfully monitored stress distribution and localized large cracks on a 12 meter (39
ft) long girder.

When using the stretching technique, it is assumed a uniform velocity change in the
media, which is valid for uniform temperature change, but not valid in the uni-axial stress
condition. After multiple scatterings, the coda waves (late part of signal) contain both
P wave and S wave, and the relative velocity change calculated by the CWI analysis is a
weighted average of P and S velocity perturbation [23]. Therefore, the relative velocity
change through CWI analysis is affected by the chosen time window when the concrete
specimen is under uni-axial stress [7, 11].

— Reference signal
3 1 —Stressed signal 5
2 - - -Stressed signal after stretching
5 05F |
<
s O
o]
N
© -0.5
S
2 -1

0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11
t (ms)

Fig. 2.4. An example of applying stretching technique on ultrasonic waveforms. Blue line is
acquired from stress-free state, and the red solid line is from unstressed state. The red dash
line is interpolated from stressed state waveform at 7(1 + &;,,). The stretched waveform
almost overlaps the reference one.
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Chapter 3

Laboratory experiments

This chapter presents laboratory experiments on concrete cylinders in compression test and
on beams in bending test. In both tests, ultrasonic wave velocities were measured along
the stress direction and also in the transverse direction. Acoustoelastic coefficients were
calculated and compared. In this chapter, sensor selection and signal analysis methods are
also discussed.

3.1 Ultrasonic sensors selection

In the experimental study, ultrasonic wave frequency should first be determined. Low-
frequency (< 20 kHz) signals have a good signal-to-noise ratio (S/N) and a long propagation
distance, but are insensitive to small changes. High-frequency (> 500 kHz) signals can detect
very small changes, but they decay quickly, resulting in short propagation distances and low
S/N [4]. Frojd and Ulriksen [24] investigated the frequency influence on CWI analysis in
concrete specimens and recommended ultrasonic waves in the frequency range of 50-150
kHz for good sensitivity and S/N.

In this study, we first used PZT disks for the ultrasonic transmitter and the receivers.
One challenge for using the PZT sensor is presence of cross talk in signals, as shown in
figure 3.1. For a short source-receiver distance, the beginning part of the signal may be
mixed with cross talk, which affects CWI analysis.

After investigating different combinations of ultrasonic sources and sensors, we decided
to use the PZT disk as the ultrasonic transmitter and acoustic emission (AE) sensors as the
ultrasonic receivers, as shown in figure 3.2. This PZT disk is 20 mm in diameter and 3 mm
thick and vibrate in thickness mode. The PZT sensor has low cost and low profile and easy

11



for quick installation. The AE sensor (Mistras R6I) is a resonant type sensor with central
frequency of 60 kHz. The AE sensor is used because 1) it has good shielding and can
avoid cross talk; 2) the frequency range of R61 sensor is in a proper range for measuring
acoustoelastic effect; 3) it has high sensitivity and good S/N. A typical ultrasonic signal and

its frequency spectrum are shown in the figure 3.3.

— AE sensor as receiver

1 —— PZT sensor as receiver
> 05¢
[0}
©
o}
= 0
3

Cross-talk

< 05

_1 H

0.05 0.1 0.15 0.2 0.25 0.3
t(ms)

Fig. 3.1. Strong cross talk in PZT receiver signal.

Fig. 3.2. Selected ultrasonic sensors: (a) PZT sensor from Steminc Inc. (b) AE sensor

R61-AST from Physical Acoustic (Mistras).
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Fig. 3.3. A typical ultrasonic signal received in the parallel direction on a concrete cylinder.
(a) Time domain signal and (b) amplitude spectrum.

3.2 Laboratory test plans and experimental setup

3.2.1 Laboratory test plans

The laboratory study include two types of tests and specimens: 1) uni-axial loading test on
a 6" X 12" concrete cylinder, and 2) four-point bending test on a 6" X 6" X 20" concrete
beam. The compression test on the cylinder was used to investigate the acoustoelastic effect
and the time window effect on CWI analysis. The bending test was used to simulate the
test on a bridge girder. The specimens in both tests were cast from the same concrete mix
batch and have the same material properties. The 28-day compressive strength was 45 MPa
(6.5 ksi), and the Young’s modulus E = 31 GPa (4496 ksi) which was obtained from the
stress-strain curve on a 6" X 12" concrete cylinder.

3.2.2 Experimental setup

The experimental setup on the 6" X 12" concrete cylinder is shown in figure 3.4. A PZT
sensor was installed on one side of the cylinder using epoxy and used as an ultrasonic
transmitter. Two AE sensors (R61) were used as ultrasonic receivers. One was installed on
the opposite side in the transverse direction, and one on the same side of the transmitter in
the direction parallel to the stress. The receivers are named as the perpendicular receiver (L
receiver) and the parallel receiver (// receiver) based on the relative receiver-to-transmitter
directions to the stress direction. A load cell was placed under the concrete cylinder to
record the loading process.

13



The ultrasonic setup on the 6" X 6" X 20" concrete beam is similar to the concrete cylinder
test, except that ultrasonic transmitter and receivers were placed on the same surface, as
shown in figure 3.5. A 120 mm (5") strain gauge was installed between the PZT transmitter
and the parallel receiver to monitor strain during the loading process. This setup simulates
the situation in field tests because only one surface is typically accessible in bridge girders.

Both tests were performed in a Forney concrete compression/bending machine. In both
compression and bending tests, the specimens were loaded at a rate of 4 psi/sec. In the
compression test, the load was applied up to 30% of the ultimate load to avoid microcracks
in concrete [25]. In the bending test, the load was loaded until the beam failed.

An Olympus 5077PR ultrasonic square wave pulser/receiver was used to drive the
PZT transmitter. The pulser duration was set for optimum driving around 100 kHz. The
received signals were sampled by a digital oscilloscope PicoScope® 4824 at the sampling
rate of 40 MS/s and the duration of each signal was 2 ms. Each signal was averaged ten
times to increase the signal-to-noise ratio. The ultrasonic signals were recorded every 2
seconds during the loading process. A LabVIEW program was developed to control the
data acquisition system and synchronize ultrasonic data and loading/strain data.

Load
MISTRAS
t AE5A +40 dB
Ultrasonic pulser: L pzT| 1L AE | ,
Olympus 5077PR
T PicoScope 4824
Trigger sync Concrete 40 MS/s
cylinder
]
J// AE NI PXTIe-4330
" { |
L LabVIEW
Load cell
Il

Fig. 3.4. Experimental setup of 6" X 12" concrete cylinder.
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Fig. 3.5. Experimental setup of the 6" X 6" X 20" concrete beam: (a) side view; (b) plan
view.

3.3 Analysis of time window effects

3.3.1 Time window effects on CWI analysis

When the CWI analysis method is used to calculate the stress induced velocity change in
concrete, many researchers found that the results depend on the chosen time window in the
signals [7, 11], which means the material change in concrete is nonuniform. Figure 3.6
shows two signals received from a concrete cylinder in two directions, in which the primary
P wave components are highlighted in both signals. The parallel signal has clear P wave
and Rayleigh wave arrivals, which are the components propagating along the surface. In
order to investigate the time window effects on the acoustoelastic coefficients, the signals
were divided into seven time windows and each windowed signal was used to calculate the
relative velocity change by the stretching technique, as shown in figure 3.6. The centers of
the seven non-overlapping windows (.) are from 0.075 ms to 0.975 ms in the first half of the
entire signal, and the width of each window (¢,,) is 0.15 ms. The acoustoelastic coefficients
calculated from these seven windows and the full-length signal are shown in figure 3.7. It
can be seen that the calculated acoustoelastic coefficients vary largely with different time
windows in both stress direction (// receiver) and unstressed direction (L receiver). The
solid lines represent results by stretching the full-length signals, which can be regarded as
a weighted average of the values from the seven time windows.
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Fig. 3.6. Signals received from parallel receiver (top plot) and perpendicular receiver
(bottom plot). The signals are divided into seven time windows. P wave part is selected at
[7p,1.5t,] in this study.
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Fig.3.7. Acoustoelastic coeflicients @ by stretching different time windows and by stretching
the full-length signals.
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Lillamand et al. [3], Bompan and Haach [5] found that the acoustoelastic effect is the
most significant when the wave propagates and polarizes in the stress direction. Therefore,
the wave components mostly propagating in the stress direction show highest velocity
change and vice versa. However, if the full-length signals are analyzed, the acoustoelastic
coeflicients do not show much difference between two directions. In the cylinder test, we
obtained @ = 0.055 %/MPa (0.38 %/ksi) in the parallel direction, and @ = 0.048 %/MPa
(0.33 %/ksi) in the perpendicular direction, respectively. These results can be explained
by that after many scatterings, the fully diffused wave has random propagation directions
and polarization, and therefore the acoustoelastic coefficients do not depend on the sensor
location, as shown in figure 3.8. In this way, the acoustoelastic coefficients calculated
from the coda wave parts or the full-length signal do not represent the corresponding
acoustoelastic effects in each direction.

3.3.2 Time window of direct P wave

To ensure consistent wave propagation and polarization directions in the measurement, we
propose the use of the time window containing the direct P wave part only, as shown in
figure 3.6. The selected time window is in the range of [¢,, 1.5¢,], where ¢, is the arrival
time of the P wave. Because the velocity ratio between P and S waves is V/ V, = 0.6,
we choose 1.51, as the end of P wave window to avoid the S wave’s arrival. Unlike the
coda wave, the time window [#,, 1.51,] contains only the direct P wave. As seen in figure
3.8, the coda wave experiences much longer travel path than the direct P wave, and has
random propagation/polarization directions. In this test setup, the direct P waves follow
either the stress direction or unstressed direction. By using the time window at [tp, 1.5 tp],
the propagation and polarization of ultrasonic waves can be fixed along the stress direction
and unstressed direction, avoiding the mixing of other wave types.

Figure 3.9 shows the relationship between relative velocity change and stress level
calculated from the time windowed signals in [#,, 1.5¢,] and the full-length signals in two
directions. The velocity change of direct P wave in the parallel direction shows a much
higher sensitivity than in the perpendicular direction. In the parallel direction, both the
propagation and the polarization directions of the direct P wave are along with the stress,
whereas in the perpendicular direction, the propagation and polarization directions are
perpendicular to the stress direction. When the full signals are analyzed, the coefficients
are similar in both directions.
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Fig. 3.8. Sketch of propagation paths of direct P wave (solid line) and coda wave (dash
line).
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Fig. 3.9. The relationship between wave velocity change and stress in directions parallel to
and perpendicular to the stress.

3.3.3 Automatic determination of P wave arrival

In the time window selection process, the P wave arrival time 7, was manually picked. To
improve the efficiency of data processing and reduce manual error, the Akaike Information
Criteria (AIC) method [26-28] is used to roughly determine the P wave arrival time #,,. For
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a digital waveform S[1, N] of length N samples, the AIC value is evaluated as:
AIC(k) = klog[Var(S[1,k])] + (N — k — 1)log[Var(S[k + 1,N])] 3.1

where k is the k" sample of the signal, and Var() is the variance function. In the analyzed
time window, the global minimum of AIC value can represent the onset point #,. Figure 3.1
shows an example of P wave arrival pickup using the AIC method.

Because the relative wave velocity change due to stress is very small, the AIC method
is only used to approximate 7, and the time window rather than calculate the relative wave
velocity change. The AIC method will be used in all following experiments to determine
the time window.

g
= Ultrasonic signal
Q.
€
<
e}
(0]
N
t_é, \
2| Ac
[tp, 1.5tp]
-0.1 -0.05 0 0.05 0.1 0.15 0.2

t (ms)

Fig. 3.10. P wave arrival’s pickup using AIC method.

3.4 Results from small concrete beam

Similar test and data analysis procedures were also applied to the bending test on the small
concrete beam (6" x 6" x 20"). Figure 3.11 presents the relative velocity change of P wave
along the stress direction and stress free direction, by stretching the signals in the window
of [tp, 1.5 tp]. Along the stress direction, the acoustoelastic coefficient is 0.768 %/ksi,
slightly smaller than the value measured in the cylinder test (0.836 %/ksi). In the transverse
direction (stress free), the P wave velocity slightly decreases with increasing stress level,
whereas the velocity still increases in the concrete cylinder test. The authors believe that
the difference is caused by different lateral confinement conditions in the beam and cylinder
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tests. In the cylinder test, the circumferential restraint results in compressive stress in the
transverse direction [29, 30], which causes increasing velocity with loading. However, in
the bending test of the concrete beam, the transverse direction is free to expand due to the
Poisson’s effect, which causes small decrease of P wave velocity in the lateral direction. We
expect a similar behavior in the two directions on large prestressed concrete girders.

In field tests, no reference signal from the zero stress state is available. With the self-
reference test setup, we can use the measurement in the lateral direction as the reference,
and estimate the stress level based on velocity difference between two directions. The self-
reference method can also reduce the effects of concrete material variation and temperature
changes. More details on the temperature effects are presented in the next chapter.

0.8
A Stress direction A
A Non-stress direction
0.6 .
A
t':lo\\(\6
_ 1P
204+ oﬂ'
>
3
0.2+
0 A
@ =-0.143%/ ksj A
0 0.2 0.4 0.6 0.8

Stress (ksi)

Fig. 3.11. Relative P wave velocity change vs. stress on the top surface of the 6" X 6" X
20" concrete beam.
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Chapter 4

Test on a full-scale bridge girder

The proposed ultrasonic test method was validated on a full scale bridge girder to monitor
the stress release process. Temperature effects on ultrasonic velocity were also further
investigated on the stressed and unstressed directions.

4.1 Bridge girder description and experimental setup

Validation experiment was performed on a newly cast prestressed concrete girder to monitor
the process of prestress release at the Omaha site of Coreslab Structure Inc. The bridge
girder is 40 meter (131 ft) long, and the concrete compressive strength at the test time was
52 MPa (7.5 ksi). The side view and cross-sections of the girder are shown in figure 4.1 and
figure 4.2. The girder had been covered and steam cured at high temperature to accelerate
the early strength, then it was exposed to ambient temperature before prestress release. The
prestressing release process was divided into two parts: 1) the top strands were cut one by
one using cutting torch; 2) all bottom strands were released slowly with the hydraulic pump.
The ultrasonic test setup was installed on the bottom flange at the mid-span of the
girder, where it had the highest losses. Because the bottom surface is inaccessible, all
sensors were installed on the side of the bottom flange at the mid-span, including one PZT
sensor (ultrasonic transmitter) and two AE sensors (// receiver and L receiver) (figure 4.3).
The distance between the transmitter and the receivers was 300 mm (12"). Three mechanical
strain gauge (DEMEC) targets were installed close to the ultrasonic parallel receiver for
measuring strain after prestress release (figure 4.3). Ultrasonic signals were acquired at a
sampling rate of 40 MS/s, with an interval of 0.1 second throughout the prestressing release
process. The DEMEC data were measured only before and after the release process.
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Fig. 4.1. Side view of the 131 prestressed concrete bridge girder (not to scale).
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Fig. 4.2. Cross sections at the end (left) and middle (right) of the prestressed concrete
bridge girder.

4.2 Results and discussion

4.2.1 Ultrasonic monitoring

The measured relative wave velocity changes in two directions are shown in figure 4.4(a),
with the blue curve representing measurements in the prestress direction. The top strands
were released one by one in the period of 40-150 seconds, and the bottom strands were
released slowly in the period of 940-1335 seconds. The total P wave velocity change in the
prestress direction was about 3% when the prestress release finished.

During the time gap between release of the top and the bottom strands (150-940 seconds)
and after prestress release finished (> 1335 seconds), the velocities in both directions still
showed slight increase with time although stress was constant during that period. We
believe the slow velocity change after stress release was due to temperature effect when the
concrete girder was exposed to cold ambient temperature after curing cover was removed.
The temperature effect presented in the entire prestress release process. We can correct
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Fig. 4.3. Ultrasonic sensors (top) and DEMC target positions (bottom) on the bridge girder.

the temperature effect using the velocity change rate in the stress free period (r >1335
seconds). The relative velocity change after temperature correction is shown in figure
4.4(b). Similar to the small beam test in laboratory, the relative velocity changes in the
longitudinal and transverse directions show opposite signs. The velocity in the transverse
direction decreased during the release process due to Poisson’s effect with relative change
of -0.275% after temperature correction.

When we zoom in the segment of the top strands cutting (40-150 second), as shown in
the inset in figure 4.4(b), the dv/v curve clearly recorded the step-wise process when the top
strands were cut one by one. The bottom release shows a relative smooth process. These
results indicate that the ultrasonic test not only recorded the change of wave velocity due to
stress change, but also showed more details of the stress release process of the prestressed
steel strands.

4.2.2 Stress and strain measurements
Strain measurement using DEMEC

In order to calculate the acoustoelastic coefficient, we need to measure the stress/strain
change caused by prestress release. In this test, the total strain measured by the DEMEC
was -0.083% in the entire prestress release process. The modulus of elasticity of concrete
can be estimated using the following empirical formula adopted by AASHTO LRFD [31]:
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Fig. 4.4. Relative velocity change monitored during the prestress release process on the
131-ft long bridge girder, before and after temperature correction. Blue lines represent the

result from the parallel receiver, and the red lines are from the perpendicular receiver. The
inset in (b) shows more details in the process of cutting the top strands.

24



E. = 33,000y £, (ksi) 4.1)

where

v = unit weight of concrete (kcf)

’

f. = concrete compressive strength (ksi)

With the measured total strain of -0.083% from DEMEC data, the stress is then calculated
as 28.3 MPa (4.1 ksi). The acoustoelastic coefficient in the stress direction is @ = 0.731
%/ksi, and in the transverse direction is @ = -0.007 %o/ksi.

AASHTO LRFD Prestress Losses Calculations

The stress in concrete after prestress release can also be calculated based on AASHTO
LRFD specifications [31]. The detailed calculation procedure is shown in figure 4.5. The
calculated stress is 4.3 ksi, which is very close to the result 4.1 ksi based on DEMEC
measurement.

4.3 Temperature effect in prestressed concrete members

4.3.1 prestressed concrete specimens and test setup

Temperature has significant influence on measurements of strain, camber, and ultrasonic
wave velocity, and the temperature effects are often comparable to or even larger than
the stress induced changes. The proposed self-reference ultrasonic test method provide
a solution to reduce the effect of temperature substantially. In Figure 4.4(a), the wave
velocities in both directions were affected by temperature change in the girder. Figure
4.4(b) gives the temperature corrected results using the data after prestress release (constant
stress). Although the relative velocity changes have different values after correction, the
difference between the velocities in two directions does not change. Therefore, as long as
the concrete in test region has a uniform temperature distribution, we can always use the
measurement in stress free direction as a reference.

However, the temperature induced wave velocity change may be different at different
stress levels. That means the self-reference test method may only partially cancel the
temperature effect on a prestressed concrete member, because the temperature induced
velocity changes are slightly different in the prestress direction and unstressed direction .
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AASHTO LRFD Prestress Losses Calculations
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Fig. 4.5. Prestress loss calculation based on AASHTO specifications.
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To investigate the temperature effect on ultrasonic velocity in prestressed concrete members,
we performed two experiments: one on a the prestressed concrete bridge girder at Coreslab
Inc., and another on a one-way prestressed concrete slab in the structural laboratory at Perter
Kiewit Institute (PKI), as shown in figure 4.6 and figure 4.7.

In the bridge girder test (figure 4.6), the ultrasonic sensors were installed on the bottom
surface, with the transmitter and longitudinal receiver close to the edge, and the transverse
receiver towards the inside. The distance between the transmitter and receivers was 12”. Two
thermocouple sensors were also attached to the bottom surface to monitor the temperature
change of concrete. The monitoring lasted for about 6 hours from early morning to noon.
The girder temperature increased from 23 °C to 28 °C. Although the sensors were installed
on the bottom surface to avoid direct sunlight, there was still temperature gradient in concrete
between the two thermocouples and along the transverse ultrasonic wave path.

Fig. 4.6. Investigating temperature effect on ultrasonic wave velocity in the bridge girder.

In the prestressed concrete slab test (figure 4.7), similar to the setup on the girder, one
transmitter and two receivers were installed on the top surface in orthogonal directions. Two
thermalcouple sensors were attached to the tested area to monitor the temperature change
of the concrete slab in ambient condition. The test lasted for about 12 hour.

In both tests, the temperature data were measured and recorded by a Pico® TC-08
Thermocouple Data Logger. Since the temperature change was relatively slow, the ultrasonic
signals and temperature data were collected every 10 minutes. A LabVIEW program was
used to control the data acquisition system and synchronize ultrasonic data and temperature
data.
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Fig. 4.7. Test on an one-way prestressed concrete slab in PKI structural laboratory to
investigate the temperature effect on the ultrasonic wave velocity in prestressed concrete
members.

4.3.2 Results of temperature effect

Using the analysis method described in section 3.3, the relative velocity change dv/v caused
by temperature are presented in figure 4.8 for the bridge girder and figure 4.9 for the
prestressed concrete slab. In all tests, the wave velocities in both directions are affected by
temperature and they decrease with increasing temperature. In the bridge girder test, the
velocity change reached 0.35% in 5 °C temperature range.

The curves in two tests have different slopes, which are caused by different materials and
temperature gradient. However, within each test, the velocity in the prestressed direction
has a slightly smaller slope than in the unstressed direction. The slope difference between
two directions is only 0.0235 %/ °C in both tests. This difference can be explained by
the nonlinear behavior of concrete material. When the concrete is prestressed, it becomes
denser and has lower nonlinearity than in the unstressed condition. In the stressed direction,
the velocity is also less sensitive to temperature change than in the unstressed direction.

If the prestress level is low, then the dv/v ~ T slope difference between two directions
is small, i.e., the temperature effects on velocity in both directions are almost equal. The
self-reference test setup will automatically cancel the temperature effect by measuring the
velocity difference between two directions. When the prestress level is high, as in the case
of the bridge girder test, using the self-reference setup will still be able to reduce the 70%
to 80% of temperature induced measurement error. The remaining temperature effect can
be further compensated by using the slope difference between two directions.
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Fig. 4.8. Relative velocity change with temperature on the prestressed concrete bridge
girder.

0.1
A Stress direction
ol A Non-stress direction| |
A oS0 7
—_ 7y
g\‘i 0.1 3?50/0/00
§ oy B
S 0.2 0y
'36‘)
o/o/o
-0.3
-04 ‘ ‘ w ‘
23.5 24 24.5 25 25.5 26

Temperature (°C)

Fig. 4.9. Relative velocity change with temperature on the one-way prestressed concrete
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Chapter 5

Conclusions and future work

In this study, we experimentally investigated the ultrasonic acoustoelastic effects in concrete,
using small scale specimens and full-size prestressed concrete bridge girders. Accurate wave
velocity measurements are needed in order to estimate prestress loss using this technique.
Coda wave interferometry (CWI) is commonly used for analysis of small wave velocity
change in concrete. Our study showed the results from CWI analysis are strongly affected
by the time window position in signals. We proposed to only use the direct P-wave part in
the time range of [f,,,1.5¢,] for CWI analysis and obtained consistent results.

In both the small beam and big girder tests, along the direction parallel to the applied
stress, the wave velocity increases with compressive stress level and shows highest sensitivity
to stress change. In the transverse direction (no stress), the velocity decreases with stress
due to Poisson’s effect and it has the lowest sensitivity.

The proposed ultrasonic method was validated on a 131-ft long prestressed concrete
girder at Coreslab Structures in Omaha. We monitored the entire prestress release process
using ultrasonic waves. The ultrasonic method clearly shows the stress release process
and indicates each strand cut detail. The measured acoustoelastic is 0.731%/ ksi in the
prestressed concrete girder, similar to the value obtained in laboratory specimens.

We also investigated the temperature effect on ultrasonic wave velocity in prestressed
concrete members. Although temperature has significant effect on wave velocity mea-
surement, the proposed self-reference test setup can effectively cancel or compensate the
temperature effect by using the velocity measurement in the unstressed direction as the
reference.

This phase I research proved the feasibility of using ultrasonic waves for evaluation of
prestress loss in prestressed concrete girders. Camber is another important parameter in
construction and placement of prestressed concrete girders. The future work will be focused
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on prediction of prestress loss and camber growth of prestressed concrete girders during the

period from release to deck construction. In order to apply this NDT technique to practice,

the future works include:

1.

build the relationship between ultrasonic wave velocity and strain in concrete based
on measurements on Nebraska prestressed concrete girders;

develop an instrument and algorithm capable of measuring wave velocity differences
with high accuracy;

understand and correct temperature effects on ultrasonic and camber measurements;
develop a calculation procedure to predict stress loss and camber from production to
deck placement based on ultrasonic measurement;

. improve the current camber calculation procedure by measuring actual modulus of

elasticity E using ultrasonic waves before prestress release.
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